DOI: http://dx.doi.org/10.18782/2320-7051.2414

ISSN: 2320 – 7051 *Int. J. Pure App. Biosci.* **4** (6): 47-58 (2016)

Insilico Strategy of Epitope Design in Clostridium botulinum

Khalida Naveed*, Naila Jawaid and Syeda Tatheer Fatima

Baqai Institute of Information Technology, Baqai Medical University, Karachi, Pakistan *Corresponding Author E-mail: khalidanaveed@baqai.edu.pk Received: 30.11.2016 | Revised: 15.12.2016 | Accepted: 17.12.2016

ABSTRACT

Clostridium botulinum is the name of a collection of bacteria that frequently habitat in soil. These are rod-shaped organisms that rose under anaerobic condition. They have the ability to produce spores for their survival under unfavorable conditions. The C. botulinum genome comprises of 3,886,996 BP, 28.24, GC%, 3650 coding sequence, 9rRNA and 80tRNA. Identifying a legend in a drug discovery project assumes that the drug target is known and has been characterized. The majority of available drugs have protein molecules as their targets for botulinum toxins are available for botulinum toxins. In our current project, potential epitope were identified in C. botulinum genome (An epitope is the part of the antigen that binds to a specific antigen receptor on the surface of a B cell) the predicted epitope by using available bioinformatics tools i.e. Vaxijen, TMHMM, Bcpred, MHCpred, Propred I, Propred, T-epitope designer, phyre and Pepitope. The two screening steps were adopted in this work. Previously identified 22 essential membrane proteins sequence were taken and in the first step screening the Vaxijen, TMHMM and Bcpred were used for selecting C. botulinum proteins as antigenic exomembrane B-epitope. The two epitope, one from each protein have been designed in such a way that each epitope is highly likely to bind determined the number of (HLA molecules comprising of both the MHC-I and II) and interacts with most frequent HLA alleles (A*0201, A*0204, B*2705, DRB1*0101, and DRB1*0401) in human population. Therefore, our selected epitope are highly potential to induce both the B-cell and T-cell mediated immune responses. Of course, these selected epitope require further experimental validation.

Key words: insilico strategy, epitope prediction, Clostridium botulinum.

INTRODUCTION

Clostridium botulinum is the name of a collection of bacteria that normally habitats in soil. These are rod-shaped organisms that rose under anaerobic condition. They have the ability to produce spores for their survival under unfavorable conditions. *C. botulinum* produces a toxin known as botulinum neurotoxin toxin (BoNTs) that is associated

with life threatening neuro-paralysis. BoNTs are grouped into seven different sub-types designated with alphabetic letters from A to G. Among them A, B, E and F are pathogenic to humans (CDC, 2015). This toxin is among the list of bioterrorist agent with highest potential risk to the masses and has been used as biowarfare weapon by US military since Second World War.

Cite this article: Naveed, K., Jawaid, N. and Fatima, S.T., Insilco Strategy of Epitope Design in *Clostridium botulinum, Int. J. Pure App. Biosci.* **4**(6): 47-58 (2016). doi: http://dx.doi.org/10.18782/2320-7051.2414

Naveed et al

The most effective treatment against BoNTs is vaccinations. Since 1940s efforts has been directed for the development of effective vaccines against botulism¹⁰. To date, under the supervision of Investigational New Drugs (INDs) amonovalent and a pentavalent vaccine is available against serotype F and A-E respectively¹. While various DNArecombinant vaccines are under clinical trial³. But, at present, there are no approved vaccines against⁴. Many are available different approaches are under consideration for the effective improved and diagnosis and development of treatment including vaccination, synthetic small peptides and small-molecule inhibitors¹¹. The most effective approach for the prevention of botulism could be the vaccines consisting of suitable antigen that can elicit appropriate immune response. The process of development of effective vaccine involves recognition and identification of epitope that can stimulate strong protective humeral response¹⁷.

The pathogenicity of a pathogen is often due to its pathogenic secretory and surface proteins that have also antigenic properties too¹⁴. Therefore, can be considered as one of the potential candidates against vaccine development. B-cell generates antibodies against antigenic and pathogenic proteins after recognizing the B-cell epitope over these proteins. B-cell epitope mapping can not only beneficial for effective diagnostic procedures but can also serve as a initial step towards vaccine designing². Likewise, the specificity and diversity between antigen and human leukocyte antigen (HLA) alleles binding also contributes to specific and selective immune response.

The epitope and peptide based vaccine developmental procedures are easy, specific and harmless as compared to orthodox **Copyright © December, 2016; IJPAB** procedures. The peptide based vaccine developmental processes has accelerated as a result bacterial and human genome projects. The effective prediction and mapping of B-cells and T-cells from pathogenic bacteria with the aid of computational and bioinformatics tools is a significant achievement in the course of effective vaccine design¹⁷.

Various membrane proteins are reported in literature through bioinformatics based approach against *C. botulinum* for potential vaccine targets¹⁴. In this study, we have explored 22 different essential membrane associated proteins for peptide based vaccine design with the aid of insilco approach together with simulation and verification of fold levels. This will lead to the identification of best possible and potential epitope for both B-cell and T-cell based immunity¹⁴.

MATERIAL AND METHODS

Antigenic B-epitope selection: The twenty two essential membrane proteins of C. *botulinum* were earlier identified by using of subtractive genomics approach and used as best vaccines candidates were selected for the current study and a novel approach of epitope designing was adopted where an epitope should produce both B-cell and T-cell mediated immune response⁵.

Prediction of B-cell epitope: The complete amino acids sequence of each protein was retrieved from NCBI database and all proteins sequence were analyzed at Vaxijen server for the prediction of antigenic proteins⁹. And default parameters with threshold value (>0.4, ACC output) were used against bacterial species to check the antigenicity of each full length protein. Proteins having antigenic score >0.5 were selected⁹. Then each full length proteins were subjected at TMHMM v 0.2 prediction server in order to identify the

ISSN: 2320 - 7051

surface exposed amino acids for each full length protein¹².

In the processes of B-cell epitope prediction each full length protein was subjected at Bcpred server to Use for the identification and characterization of B-cell epitope to make a novel vaccines against *C*. *botulinum*. And all predicted B-cell epitope (20 mers) having a Bcpred cutoff score >0.8 were selected¹⁵. The selected were then subsequently checked for membrane topology by comparing with TMHMM results for exomembrane amino acids sequences. Then selected B-cell was further analyzed at Vaxijen to check the antigenicity. Then finally 44 were selected for use in T-epitope selection.

Screening one step: The T- cell was anticipated from B-cell. Then two screening steps were approved for sequence based and OSAR simulation approaches were used in the interpretation of T- selection. In the first screening step the considerations were. The first criteria was sequence should bind with MHC class I, and class II and sequence must be >15 was selected and second sequence must bind with HLA-DRB1*0101 and must be antigenic based on Vaxijen score. Then after this the sequence was bind with Propred I (47 MHC Class-I alleles)¹⁵, and propred 51 MHC Class II alleles¹⁶. And both servers were used for the determination of alleles bind with above criteria. The QSAR simulation approach was used for check the inhibitor concentration of antigenic epitope at the platform of Propred I, Propred and MHCpred server (DRB1*0101) and Vaxijen, respectively⁶. With highest antigenicity and those bind more than 15 MHC molecules including with class I and II and less than 100nm (IC50) scores were selected.

Screening step two: The second screening step was subjected by using T-epitope designer

tool in which the principles was >1000 HLA fragments, peptides should bind with 75% of total HLA molecules and must bind with high score to A*0201, A0204 and B*2705 and must bind with DRB1*0101, and DRB1*0401 and MHCpred .The final list of was made with non-overlapping peptide sequences that pass these above mentioned criteria and Vaxijen and IC50 scores was used for selection of DRB1*0101 and DRB1*0401 binding peptides were selected for design epitope for fold level topology examination⁷.

Homology modeling for epitope analysis: For the homology modeling of each protein as a whole was subjected to Phyre version 2.0 Web-server⁸. Followed by best model prediction on the basis of super families and evalue of template. The exo-membrane topologies of the predicted were examined through their 3D structures and clustering of with the aid of Pepitope server¹³. This sever utilizes 3D structure of Phyre server for the prediction of linear alignment of with their respective proteins and also for prediction their epitope pockets and exo-membrane position in 3D structure of proteins.

RESULTS AND DISCUSSION

Antigenicity and topology of selected protein:

By using Vaxijen the anticipated possible proteins having antigenic score >0.4 were selected as an antigenic determinant and lastly 17 proteins sequence were selected as antigenic determinants shown in (**table 1**). The basic principle of a decent epitope is that it must be showing to cell outside and TMHMM result showed that all 17 probable antigen having surface exposed peptides shown in (**table 2**). Int. J. Pure App. Biosci. 4 (6): 47-58 (2016)

Table1: VexiJen predicted probable antigen and non-probable antigen								
S. No.	Protein id	VaxiJen score	Comments					
1	YP_001386116.1	0.6282	Probable ANTIGEN					
2	YP_001386895.1	0.3078	Probable NON-ANTIGEN					
3	YP_001387255.1	0.4396	Probable ANTIGEN					
4	YP_001386503.1	0.4003	Probable ANTIGEN					
5	YP_001386587.1	0.4173	Probable ANTIGEN					
6	YP_001386886.1	0.4931	Probable ANTIGEN					
7	YP_001387027.1	0.7008	Probable ANTIGEN					
8	YP_001387384.1	0.5959	Probable ANTIGEN					
9	YP_001387457.1	0.4304	Probable ANTIGEN					
10	YP_001387707.1	0.5763	Probable ANTIGEN					
11	YP_001387745.1	0.3927	Probable NON-ANTIGEN					
12	YP_001388265.1	0.5384	Probable ANTIGEN					
13	YP_001389313.1	0.2271	Probable NON-ANTIGEN					
14	YP_001387020.1	0.5164	Probable ANTIGEN					
15	YP_001387133.1	0.4053	Probable ANTIGEN					
16	YP_001387258.1	0.3751	Probable NON-ANTIGEN					
17	YP_001387314.1	0.5220	Probable ANTIGEN					
18	YP_001386372.1	0.4096	Probable ANTIGEN					
19	YP_001387500.1	0.3101	Probable NON-ANTIGEN					
20	YP_001388739.1	0.6415	Probable ANTIGEN					
21	YP_001388796.1	0.7614	Probable ANTIGEN					
22	YP_001389355.1	0.6086	Probable ANTIGEN					

Bcpred result based on Vaxijen and TMHMM Scores: The Bcpred results recommended that predicted peptides among 22 proteins only 19 are having Bcpred score >0.8 shown (**Table 2**). These 19 proteins were exposed to TMHMM again to identify exomembrane constituencies and from them 15 proteins were concluded with Bcpred score >0.8 and exo-membrane topology. The Superficial exposed B-cell epitope peptides of 15 finalized proteins were analyzed using Vaxijen (threshold=0.4) to check the antigenicity and all peptides except one are having Vaxijen score >0.4 results are précised in Table 3. So 15 membrane proteins, among 22 were finalized as antigenic exo-membrane B-epitope targets shown in (**Table 3**). Naveed et al

Table 2: TMHMM result of 17 finalized proteins from VexiJen score									
S.No.	PROTEIN	TMHMM RESULTS	LENGTH OF PROETIN						
1	YP_001386116.1	1– exo peptide	1-133						
2	YP_001387255.1	2- exo peptide	1-90						
			209-572						
3	YP_001386503.1	5- exo peptide	46- 59						
			117 - 167						
			231 - 239						
			298- 349						
			400 - 433						
4	YP_001386587.1	5- exo peptide	1 - 111						
			164 - 196						
			262- 275						
			342 - 350						
			409 - 422						
5	YP_001386886.1	3- exo peptide	30 - 55						
			208 - 232						
			110 - 123						
6	YP_001387027.1	4-exo peptide	30 - 67						
			125 - 128						
			200 - 203						
			253 - 268						
7	YP_001387384.1	2-exo peptide	30 - 43						
			102 - 190						
8	YP_001387457.1	1-exo peptide	1-212						
9	YP_001387707.1		186 - 211						
		2- exo peptide	393- 396						
10	YP_001388265.1	1-exo peptide	29 - 556						
11	YP_001387020.1		1 - 14						
		5-exo peptide	106 - 147						
			203 - 211						
			323 - 352						
			405 - 408						
12	YP_001387133.1	3-exo peptide	36 - 97						
			156 - 174						
10			259 - 277						
13	YP_001387314.1	3-exo peptide	1 - 19						
			17 - 90						
14	VD 00129(272.1	7	157 - 188						
14	1P_001580572.1	7-exo peptide	28 - 41						
			07 - 109 176 - 180						
			256 202						
			381 394						
			461 474						
			544 - 546						
15	YP 0013887391	1-exo nentide	1 - 3						
16	YP 001388796 1	1-exo peptide	1 - 3						
17	YP 001389355 1	4-exo peptide	46 - 64						
11	11_001307333.1	r exo populac	175- 216						
			267 - 270						
			325 327						
L			525 521						

Naveed et al Int. J. Pure App. Biosci. 4 (6): 47-58 (2016) ISSN: 2320 - 7051							
	Table 3: Summ	arized result	s of BCPred, T	MHMM and VexiJen of finalized 15	proteins		
	Protein name	Total no	Amino acids	Bcpred epitope sequence	Bcpred	Vaxijen	
S.No.		of epitope	position		score	score	
1	YP_001386116.1	1	41	NMITYLKPTITKYIDLNGNK	0.845	0.6981	
			306	SMEETGASAEEMSATSEEIE	0.973	1.3210	
			119	EKNLNEFRQRREEVFKVAKE	0.925	0.1372	
2	YP_001387255	4	22	IIVGITGYYFNAKSNKAIKK	0.901	0.6987	
			370	IDSATKDAIEKSKTIEEINV	0.82	0.6195	
				VTTNIISKSIINPLKESVEY	0.872		
		2	111	IGTLIINPTKGVDPSTMQKI	0.906	0.4247	
3	YP_001386503		400	DAPATLLNSTGNTVCAMMIT	0.851	0.5935	
4			32	FNIKSEEKANDEEVKSIKGV	0.985	1.5689	
	YP_001386587	3	445	GFDDPVEQNKEEQKKVMEEN	0.98	0.7432	
			84	SSKDNNEKKKEGIVDRVLSV	0.957	1.2129	
5	YP_001386886	1	211	TRMKTEIIPTSIFLNMSTGD	0.879	0.4487	
6	YP_001387027	1	217	TYPIVMFPFIQSGDRTIASS	0.873	1.2066	
7	YP_001387384	1	162	TLMVAGNIPGKTQTIPTAIY	0.761	0.5783	
8	YP_001387457	3	18	IEIFKTININTRELEDKGRK	0.963	0.8082	
			103	LPSFKLDQGYNRKKIATKYP	0.873	1.0699	
			55	KAKDVETYVEYGAADIGIVG	0.83	0.4053	
9	YP_001387707	3	41	NITNKNIFKIRSEKITLKDC	0.825	0.9307	
			296	FKENIKNLNKNIKDGKSISI	0.823	0.7517	
			193	FFYKRYKIKYAVDNLKIKTP	0.814	0.7133	
10	YP_001388265	2	117	KSGKDIKNTCTTLGANRFQT	0.998	0.9145	
			51	KKIMIQINHTLMSIPPVLMG	0.893	0.7043	
11	YP_001387020	10	79	VPSAFKDNKEEKDEEKLLTI	0.996	0.7198	
			524	VVFIPKIKTKGESAGTTSVP	0.996	1.1954	
			192	NRVKDNKTSKIIYKKDLQGE	0.992	1.2277	
			106	NEKYDITQNQTIDSSGKNYY	0.978	0.9687	
			213	ISKEAEEPKSNINPKLTLDS	0.962	1.3843	
			128	DKITYEKLKDIKGVKGFYTY	0.953	0.6478	

Naveed et al		Int. J. Pu	ure App. Biosci. 4	4 (6): 47-58 (2016)	ISSN: 232	0 - 7051
			313	SFKCTGEFESNKKGTHGSFS	0.928	0.8250
			376	EQQGAIQMEKGEKPNLSDGT	0.909	0.7079
			487	KTGTNERQEVNDKGKMEHLS	0.905	1.3061
			149	KQEVDKNINDKKEAWKLENM	0.881	0.8601
12	YP_001387133	3	223	DKIIKEPAGGAHKNLNKMAE	0.853	0.5951
			25	ARLKERPTALDYINIIFDDF	0.823	0.5965
			119	DTQGAFCGIDAEERGQGEA	0.782	1.0672
13	YP_001387314	5	84	IIGVPVAIAFGGPGAVFWMW	1	0.9976
			242	IFKGAFTPQAAVGGFGGATL	0.994	0.4582
			266	RWGTARGTYSNEAGMGSAPI	0.95	0.6914
			48	KETFGKMFSKPAEGEGTITP	0.933	0.6455
			152	MCSFCFMIEIIPSISTQSLS	0.768	1.0821
14	YP_001388739	1	43	KPNKIHIMGTDSMGRDVFSR	0.802	0.6468
15	YP_001388796	3	92	DTDKKEDMDKKEEKSAKEK	0.999	1.7980
			24	YVIIQTGPDRVKVQISKSGI	0.994	0.5201
			64	PEKKRKKKYNEMLNSISVND	0.921	0.9828

B –cell derived T-cell: Each selected B-cell epitope was examined for identification of Tcell within the B-cell epitope sequence. For the first level screening, Propred-I (47 MHC Class-I alleles), Propred (51 MHC Class-II alleles), and Mhcpred (DRB1*0101 allele) were used to isolate common T-cell epitope that share B-cell epitope sequence, can interact with both the MHC classes with highest number, and specifically interact with DRB1*0101(as the DRB1*0101 is commonest bound allele, therefore the interaction epitope produce better antigenic response).

At the second level of screening, identified peptides in the first screen were used to predict their binding abilities to >1000MHC alleles using T-Epitope Designer and that bind to >100% alleles were selected. Similarly, as **A*0201**, **A*0204**, and **B*2705** alleles are mostly used in various prediction methods, we set the cut off that selected peptides must bind to these three HLA molecules and T-epitope Designer was also used for this purpose. Then selected epitope % work done at T-epitope designer tool (Table 5). Since the frequency of DRB1*0101 and DRB1*0401 alleles of MHC Class-II is 20-50% in all. We selected T-epitope that interacted with these two HLA molecules using Mhcpred as described in methods. The final list of epitope was made with nonoverlapping peptide sequences that confirm the above mentioned criteria and Vaxijen and IC50 scores. with highest antigenicity and those bind more than 15 MHC molecules comprising of both the MHC class I and II alleles and less than 100 nM IC50 scores for DRB1*0101 were selected. From the result 4 proteins with 5 peptides among 15 were fulfilled the criteria and predicted as T-epitope candidates are shown in (Table 4 as *).

	various parameters. Epitopes selected as vaccine candidates are labeled as *										
S.No.	Protein id	Bcpred predicted epitope sequence	Number of MHC class 1 binding alleles Propred1	Number of MHC class II binding alleles Propred	Mhcpred predicted epitope sequence	Vexijen score based on Mhcpred sequence	IC50 value of epitopes for DRB1*0101 (MHCPRED)	Total number of MHC binding alleles			
1	YP_001386111	NMITYLKPTITKYIDLNGNK	0	23	YLKPTITKY TITKYIDLN NMITYLKPT KYIDLNGNK MITYLKPTI ITKYIDLNG	0.7397 0.6176 0.1075 1.5123 0.2926 1.0295	0.24 30.90 34.12 34.83 40.36 53.58	23			
2	YP_001387255	SMEETGASAEEMSATSEEIE	0	0	MEETGASAE EMSATSEEI EETGASAEE SMEETGASA EEMSATSEE ETGASAEEM SAEEMSATS AEEMSATS AEEMSATS	2.0598 0.9682 1.7880 1.3794 1.5282 1.3154 1.2224 1.2644	13.52 29.85 30.20 37.58 38.99 55.85 57.15 61.80 69.71	0			
		EKNLNEFRQRREEVFKVAKE	0	1	EEVFKVAKE NLNEFRORR FRORREEVF ORREEVFKV KNLNEFROR NEFRORREE LNEFRORRE REEVFKVAK	0.8125 0.4323 0.1051 0.0243 0.7049 1.5227 1.1472 0.8793 0.3025	13.80 15.74 25.82 28.71 29.38 39.17 43.25 89.54	1			
		IIVGITGYYFNAKSNKAIKK	0	25	EFRQKKEEY YFNAKSNKA <u>YFNAKSNK</u> IIVGITGYY GYYFNAKSN NAKSNKAIK GITGYYFNA	0.3925 1.7583 1.4327 0.3207 1.0890 1.2196 0.9462	0.82 4.37 12.39 33.19 54.95 75.34	25			
		VTTNIISKSIINPLKESVEY	0	7	ISKSIINPL SIINPLKES IINPLKESV IISKSIINP INPLKESVE VTTNIISKS NIISKSIIN	-0.8236 -1.0420 0.8115 -0.6858 -0.3249 -0.2138 -0.3920	1.83 9.73 13.90 17.02 19.32 28.71 52.48	7			
		IDSATKDAIEKSKTIEEINV	0	1	KSIINPLKE IDSATKDAI IEKSKTIEE SATKDAIEK ATKDAIEKS	-1.5567 0.9744 0.5307 0.3668 0.3223	69.02 9.12 22.86 26.67 37.33	1			
3	YP_001386503	IGTLIINPTKGVDPSTMQKI	0	1	IGTLIINPT INPTKGVD INPTKGVDP KGVDPSTMQ GVDPSTMQK NPTKGVDPS	-0.8689 1.3924 1.3938 1.6148 0.7043 1.4531	5.00 7.60 30.90 48.53 55.21 81.47	1			
		DAPATLLNSTGNTVCAMMIT	0	8	DAPATLLNS GNTVCAMMI NSTGNTVCA STGNTVCAM	0.3571 1.0599 1.0920 0.4179	1.05 8.63 30.20 62.37	8			
4	YP_001386587	FNIKSEEKANDEEVKSIKGV	5	1	KSEEKANDE KANDEEVKS NIKSEEKAN EEKANDEEV	1.8137 2.2451 0.9825 1.8589	3.26 19.36 35.97 56.62	6			
		GFDDPVEQNKEEQKKVMEN			IKSEEKAND DDPVEQNKE QNKEEQKKV FDDPVEQNK KEEQKKVME EEQKKVMEE	1.4090 1.8361 0.2730 1.8256 0.6671 0.4609 0.2955	81.00 86.30 11.32 16.48 16.94 50.47 95.72	0			
		SSKDNNEKKKEGIVDRVLSV	0	0	GIVDRVLSV	0.4641 -0.1952 0.4301	96.38 9.44 23.17	0			
5	YP_00138686	TRMKTEIIPTSIFLNMSTGD	0	4	IPTSIFLNM EIIPTSIFL PTSIFLNMS IIPTSIFLN RMKTEIIPT IFLNMSTGD	0.1837 0.7217 -0.2156 0.2835 0.0357 0.3659	6.19 7.55 7.71 12.33 16.60 73.96	4			
6	YP_0013870.1	TYPIVMFPFIQSGDRTIASS	0	45	SGDRTIASS IVMFPFIQS PIVMFPFIQ FIQSGDRTI MFPFIQSGD YPIVMFPFI	0.7581 1.2194 2.2772 0.3658 0.7988 3.3778	4.55 12.33 16.87 22.70 38.02 40.93				

Table 4: Common epitopes from each protein that can produce both the B- and T-cell mediated immunity are represents along with their

Naveed et al		al Int. J. P	Int. J. Pure App. Biosci. 4 (6): 47-58 (2016)				ISSN: 2320 – 7051		
					QSGDRTIAS IQSGDRTIA TYPIVMFPF	0.9732 1.2340 3.1066	<mark>58.88</mark> 60.81 <mark>65.16</mark>		
7	YP_001387384	TLMVAGNIPGKTQTIPTAIY	0	14	KTQTIPTAI TLMVAGNIP PGKTQTIPT TQTIPTAIY NIPGKTOTI	0.4205 0.0788 0.5960 0.5508 0.2571	26.98 29.92 37.76 47.86 61.94	14	
8	YP_001387457*	IEIFKTININTRELEDKGRK*	6	38	NINTRELED IEIFKTINI EIFKTININ INTRELEDK IFKTININT ININTRELE	1.1550 -0.3309 0.4764 1.4586 1.0627 2.3701	10.19 27.73 30.13 31.48 34.43 35.48	44	
					FKTININTR TININTREL NTRELEDKG	1.3949 1.4760 0.8280	37.67 72.28 93.76		
		LPSFKLDQGYNRKKIATKYP	0	17	NRKKIATKY SFKLDQGYN FKLDQGYNR GYNRKKIAT YNRKKIATK	0.6706 0.5881 0.7713 -0.4442 0.6158 0.7628	4.32 26.73 47.53 64.71 68.55	17	
		KAKDVETYVEYGAADIGIVG*	8	8	YVEYGAAD TYVEYGAAD KDVETYVEY KAKDVETYV EYGAADIGI	0.7023 0.1827 0.2998 0.2379 0.7194 0.6886 0.6886	5.86 31.70 42.17 43.95 59.16	16	
9	YP_001387707*	NITNKNIFKIRSEKITLKDC	0	24	SEKITLKDC IRSEKITLK KNIFKIRSE IFKIRSEKI NITNKNIFK NIFKIRSEK TNKNIFKIR	0.8185 1.1059 1.5512 0.7365 1.8222 0.2600 0.7830 0.9905	22.18 28.05 29.04 38.02 41.98 42.17 53.09	24	
					RSEKITLKD KIRSEKITL ITNKNIFKI	1.1855 0.9130 0.5455	55.98 80.35 89.74		
		FKENIKNLNKNIKDGKSISI*	3	27	NIKDGKSIS NIKNLNKNI FKENIKNLN ENIKNLNKN IKDGKSISI	0.8192 -0.5160 0.4539 0.1772 2.1246	6.61 9.29 25.41 50.35 98.40	30	
		FFYKRYKIKYAVDNLKIKTP	0	23	FYKRYKIKY KIKYAVDNL YAVDNLKIK RYKIKYAVD KYAVDNLKI YKRYKIKYA AVDNI KIKT	0.8634 -0.2952 2.1610 1.0271 0.9084 1.1921 1.8388	1.02 11.40 16.37 30.62 35.73 35.73 54.33	0	
10	YP_001388265	KSGKDIKNTCTTLGANRFQT	0	8	CTTLGANRF TCTTLGANR KNTCTTLGA DIKNTCTTL NTCTTLGAN SGKDIKNTC TLGANRFOT	0.3731 0.6461 0.5892 0.6486 1.0142 1.0292 0.4561	3.49 6.49 8.22 16.87 21.13 32.43 79.07	0	
		KKIMIQINHTLMSIPPVLMG	0	50	QINHTLMSI INHTLMSIP KIMIQINHT MIQINHTLM TLMSIPPVL HTLMSIPPV NHTLMSIPP IQINHTLMS MCDDVL/MC	0.1541 -0.1214 0.9198 1.0504 1.4452 0.6236 0.3938 0.7890 0.7154	3.79 10.35 15.35 26.18 29.51 30.27 37.41	50	
11	YP_001387020*	VPSAFKDNKEEKDEEKLLTI	0	0	KDEEKLLTI EEKDEEKLL PSAFKDNKE DNKEEKDEE FKDNKEEKD	-0.5857 0.4140 -0.2012 2.2560 2.4049 0.1784	08.55 18.62 31.70 33.96 35.56 45.19 80.05	0	
		VVFIPKIKTKGESAGTTSVP*	2	42	KIKTKGESA FIPKIKTKG ESAGTTSVP	1.4006 0.0516 0.9316	15.63 35.16 76.03	44	
		NRVKDNKTSKIIYKKDLQGE	0	3	IYKKDLQGE IIYKKDLQG KIIYKKDLQ DNKTSKIIY RVKDNKTSK	1.5027 1.2054 0.1733 -0.2053 2.0850	14.39 25.82 26.67 30.69 37.33	3	
		NEKYDITQNQTIDSSGKNYY	0	13	NKTSKIIYK KYDITQNQT IDSSGKNYY TIDSSGKNY TQNQTIDSS DITONOTID	0.0903 0.7658 1.8068 0.9657 0.8574 0.5253	69.82 2.88 16.60 18.28 19.05 24.10	13	

	Naveed et	al Int. J. H	Pure App. Bioso	ci. 4 (6): 47-58	8 (2016)	ISSN	N: 2320 – 705	1
					QNQTIDSSG ITQNQTIDS NEKYDITQN	1.3929 01.220 0.8988	39.26 <mark>39.36</mark> 45.92	
					EKYDITQNQ <mark>NQTIDSSGK</mark> YDITQNQTI	1.1749 1.1139 0.5493	76.91 79.25 90.99	
		ISKEAEEPKSNINPKLTLDS	0	32	NINPKLTLD EAEEPKSNI INPKLTLDS EPKSNINPK ISKEAEEPK	2.3057 0.4077 1.7361 1.3404 1.4756	2.96 14.59 17.66 21.38 86.10	32
		DKITYEKLKDIKGVKGFYTY	0	4	AEEPKSNIN KITYEKLKD YEKLKDIKG ITYEKLKDI KLKDIKGVK DIKCVKGEV	0.7647 0.5463 0.8069 -0.0591 1.0099 0.2432	87.90 7.21 12.30 16.11 21.68 40.18	4
		SFKCTGEFESNKKGTHGSFS	0	6	TYEKLKOIK FKCTGEFES TGEFESNKK FESNKKGTH SFKCTGEFE	0.2432 0.2710 0.1155 0.1017 2.6654 -0.1207	40.18 88.31 54.45 55.72 59.57 76.38	6
		EQQGAIQMEKGEKPNLSDGT	0	0	GEKPNLSDG MEKGEKPNL EQQGAIQME EKGEKPNLS IQMEKGEKP	0.5964 1.4655 0.6455 1.5979 0.4918	39.99 44.67 55.21 61.38 67.14	0
		KTGTNERQEVNDKGKMEHLS	0	7	QQGAIQMEK QEVNDKGKM TGTNERQEV TNERQEVND NERQEVNDK NDKGKMEHL	0.4918 0.6192 1.5187 0.9566 1.5214 0.6646	83.56 19.91 37.33 44.87 46.24 50.93	7
		KQEVDKNINDKKEAWKLENM	0	0	EVNDKGKME NDKKEAWKL NINDKKEAW EVDKNINDK QEVDKNIND INDKKEAWK KQEVDKNIN KNINDKKEA	0.6720 0.6709 -0.6496 1.5209 0.8674 0.3138 1.0295 1.2620	98.40 8.20 20.37 30.97 33.57 55.59 56.36 60.67	0
12		DKIIKEPAGGAHKNLNKMAE	0	0	IIKEPAGGA	0.9651	3.65	1
	YP_001387133	ARLKERPTALDYINIIFDDF	0	3	GAHKNLNKM KERPTALDY YINIIFDDF DYINIIFDD TALDYINII ERPTALDYI RLKERPTAL	0.4107 0.1009 1.3204 0.7424 -0.1944 0.2703 0.3706	23.01 0.75 10.23 11.38 12.56 13.61 20.28	3
		DTQGAFCGIDAEERGQGEA	0	2	RPTALDYIN FCGIDAEER	-0.0005 1.0394	74.13	2
13		IIGVPVAIAFGGPGAVFWMW	0	18	GIDAEERGQ IGVPVAIAF FGGPGAVFW IIGVPVAIA	1.1701 1.0727 1.0641 0 7140	41.88 18.54 20.04 27.73	18
		IFKGAFTPQAAVGGFGGATL*	4	15	IFKGAFTPQ AFTPQAAVG GAFTPQAAV FTPQAAVGG FKGAFTPQA	0.0284 1.0686 0.8912 1.4438 0.0834	12.91 13.68 35.32 42.56 69.02	19
	YP_001387314*	RWGTARGTYSNEAGMGSAPI	0	2	TYSNEAGMG WGTARGTYS YSNEAGMGS EAGMGSAPI TARGTYSNE ARGTYSNEA	1.3142 1.3114 1.8533 0.5664 1.1848 1.1406	22.49 31.92 61.52 62.09 62.95 93.33	2
		KETFGKMFSKPAEGEGTITP	0	10	FGKMFSKPA FSKPAEGEG KETFGKMFS TFGKMFSKP	0.2997 2.2657 -0.2576 -0.5614 1 1298	4.98 30.20 43.25 73.11	10
		MCSFCFMIEIIPSISTQSLS	0	34	IIPSISTQS FMIEIIPSI CFMIEIIPSI EIIPSISTQ MIEIIPSIS FCFMIEIIP SFCFMIEII	0.7081 0.7752 1.4870 0.5050 0.5922 1.7171 1.8738	5.65 10.59 16.83 20.99 24.55 30.55 30.55	34
14	YP_001388739	KPNKIHIMGTDSMGRDVFSR	0	31	HIMGTDSMG MGTDSMGRD DSMGRDVFS KIHIMGTDS TDSMGRDVF SMGRDVFSR IMGTDSMGR	1.0130 1.1178 2.0171 0.2259 1.1923 0.8134 0.1891 1.3634	23.33 50.82 56.89 57.68 64.57 84.53 95.50	31

	Naveed et	al Int. J. H	t. J. Pure App. Biosci. 4 (6): 47-58 (2016)			ISSN: 2320 – 7051		l
15		DTDKKEDMDKKEEKSAKEK	0	0	KEDMDKKEE DMDKKEEKS KKEEKSAKE	1.7079 1.7928 2.2276	38.11 65.77 68.08	0
	YP_001388796	YVIIQTGPDRVKVQISKSGI	0	28	RVKVQISKS IIQTGPDRV PDRVKVQIS YVIIQTGPD QTGPDRVKV IQTGPDRVKV IQTGPDRVK	0.7288 1.1728 0.8000 0.3088 0.9551 1.6724 0.1869	2.07 12.85 20.61 26.24 29.58 50.93	28
		PEKKRKKKYNEMLNSISVND	0	8	KYUBASGI KYNEMLNSIS MLNSISVND KKYNEMLNS PEKKRKKKY EMLNSISVN KRKKKYNEM NEMLNSISV	0.1303 0.1323 0.2446 1.0659 0.4477 1.6571 1.1054 0.7381 0.1941	3.68 9.25 28.12 34.28 39.54 46.34 55.21 58.21	8

	Table 5: Final selection of T-epitopes from 22 proteins Clostridium botulinum										
S.No.	Protein	Bcpred predicted epitope sequence	Epitopes	T-Epitope Designer A*0201	T-Epitope Designer A*0204	T-Epitope Designer B*2705	Mhcpred (IC50 value) DRBI*0101	MHCPred (IC50 values) DRBI*0401			
			<u>NINTRELED</u> EIFKTININ	414.90 -666.14	-238.08 -581.60	50.09 268.50	10.19 30.13	<mark>774.46</mark> 505.82			
1	YP_001387457	IEIFKTININTRELEDKGRK	INTRELEDK IFKTININT	387.71 692.05	-3.97 698.62	2050.80 -109.28	31.48 34.43	1778.28 2233.57			
			ININTRELE* FKTININTR	564.12 116.12	160.73 -404.02	1472.59 1737.06	<mark>35.48</mark> 37.67	<mark>1169.50</mark> 246.60			
			TININTREL	288.37	-282.39	575.60	<mark>72.28</mark>	<mark>458.14</mark>			
2		KAKDVETYVEYGAADIGIVG	KAKDVETYV EYGAADIGI	476.60 -1176.99 -1421.67	-0.30 -832.31 -1347.90	-194.58 -1901.75 -555.62	43.95 59.16 97.72	1545.25 195.88 405.51			
3	YP_001387707	FKENIKNLNKNIKDGKSISI	YGAADIGIV NIKDGKSIS FKENIKNLN* IKDGKSISI	-422.70 680.97 44.32	-1335.83 152.62 -36.26	-405.58 1577.69 -200.68	6.61 25.41 98.40	1256.03 228.56 1479.11			
4	YP_001387020	VVFIPKIKTKGESAGTTSVP	KIKTKGESA ESAGTTSVP	302.16 -1076.85	-379.47 -1386.53	994.38 -117.11	15.63 76.03	993.12 258.82			
5	YP_001387314	IFKGAFTPQAAVGGFGGATL	IFKGAFTPQ AFTPQAAVG GAFTPQAAV FTPQAAVGG FKGAFTPQA	-9.95 -826.56 -203.67 -417.68 -484.89	-129.75 -926.19 -108.78 -450.27 -403.49	364.70 -267.74 -865.36 681.70 768.31	12.91 13.68 35.32 42.56 69.02	788.86 797.99 193.20 96 38			

Clusters and folding: Homology modeling for each full length protein was carried out using Phyre version 2.0 Web-server and best models were selected based on super families and E-values of templates. The 3D folding and clusters of in folded protein were analyzed to confirm the exo-membrane topology of this using Pepitope server. Pepitope was fed with Phyre derived 3D structure of each protein and all identified from the same protein to analyze the linear alignment of on the corresponding protein and to determine the epitope clusters and exo-membrane position of in the folded proteins shown in (Figure 1). And best clusters calculated by Pepitope were having scores 45.551 residues no 12 for peptide **ININTRELE** and 10.122 residues no 9 for peptide **FKENIKNLN (Table 6).**

Table 6: Screening of T-epitopes using T-epitope Designer										
Protein names Epitope		T-Epitope Designer	comments	lowest score	highest score					
		(no of binders with								
		HLA molecules)								
			almost all values are positive	<mark>24.09</mark> (A)	2025.15(B*1561)					
YP_001387457	ININTRELE	100%	.mostly bind with A,B,C	<mark>82.35</mark> (B)	1635.00(A*3401)					
			alleles.							
			mostly positive for all B and	1.82(A-alleles)	1100.77(A alleles)					
YP_001387707	FKENIKNLN	90%	C alleles	87.07(B alleles)	1848.06(B alleles					

Fig. 1: Fold level characterization of cluster and topology of best using Pepitope (in red and black)

CONCLUSION

In this study by using computational approaches based on sequence structure, QSAR, simulation, and fold level analysis, we identified two potential T- derives from antigenic B-cells epitope of twenty two exomembrane essential proteins of C. botulinum. Selected T-["INTRELEDK" from YP 001387457, **"FKENITKNL"** from YP_001387707] are antigenic and have much potential to interact most common human HLA alleles (A*0201, A*0204, B*2705, DRB1*0101, and DRB1*0401). These are also found to interact with >75% of HLA molecules in a binding screening using T-Epitope Designer (that contains >1000 HLA molecules). Therefore these selected are likely to induce both the B-cell and T-cell mediated immune responses. Homology and simulation results also support the suitability of these as vaccine candidates. However, there are several pitfalls in developing a good vaccine and moreover there is lack of proper experimental disease model for botulinum suitable animal model should be used for experimental validation of confirm these to these "Insilco" results.

REFERENCES

- 1. Arnon, S, *et al.*, Jama **285(8)**: 1059-1070 (2001).
- 2. Barh, D. *et al.*, *Bioinformation* **5(2)**: PMC: 3039994 (2010).

- 3. Byrne and Smith *et al.*, Biochimie**82(9):** 955-966 (2000).
- 4. Cerdino-tarraga, A.M. *et al.*, *Nucleic Acids Res* **31:** 6516 [PMID: 14602910] (2003).
- Doytchinova, I.A. and Flower, D.R., *BMC Bioinformatics*, 8: PMID:17207271 (2007).
- 6. Guan, P. et al. Nucleic Acids Res 31: PMID: 12824380 (2003).
- 7. Kangueane, P. *et al.*, *Bioinformation* **1**: PMID: 17597847 (2005).
- 8. Kelley, L.A. and Sternberg, M.J., *Nat Protoc* **4**: PMID: 19247286 (2009)
- 9. Krogh, A. *et al.*, *J Mol Biol* **305**: PMID:11152613 (2001).
- 10. Kukreja, R. and Singh, B.R., *Springer*, 469-504 (2015)
- 11. Larsen, J.E. et al., Immunome Res 2: 2 [PMID: 16635264] (2006).
- Manzalawy, Y.E.L. *et al.*, *J Mol Recogni.*, 21: PMID: 18496882 (2008).
- 13. Mayrose, I., *et al.*, *Bioinformatics*, **23**: 3244 PMID: 17977889 (2007).
- 14. Reddy, G.K. et al., International Journal of Pharmaceutical Studies and Research, 2: 48-54 (2011).
- 15. Singh, H. and Raghava, G.P., *Bioinformatics*, **12:** PMID: 11751237 (2001).
- 16. Sturniolo, T. *et al.*, *Nat Biotechnology* **17:** PMID: 10385319 (1999).
- 17. Zhao, B. *et al.*, *Int. J. Integrative Bi*, **2**: 127 [Google Scholar] (2007).